Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation.
نویسندگان
چکیده
The paper proposes an approach to constructing feasible examples of dynamical systems with hyperbolic chaotic attractors based on the successive transfer of excitation between two pairs of self-oscillators that are alternately active. An angular variable that measures the relations of the current amplitudes for the two oscillators of each pair undergoes a transformation in accordance with the expanding circle map during each cycle of the process. We start with equations describing the dynamics in terms of complex or real amplitudes and then examine two models based on van der Pol oscillators. One model corresponds to the situation of equality of natural frequencies of the partial oscillators, and another to a nonresonant ratio of the oscillation frequencies relating to each of the two pairs. Dynamics of all models are illustrated with diagrams indicating the transformation of the angular variables, portraits of attractors, Lyapunov exponents, etc. The uniformly hyperbolic nature of the attractor in the stroboscopic Poincaré map is confirmed for a real-amplitude version of the equations by computations of statistical distribution of angles between stable and unstable manifolds at a representative set of points on the attractor. In other versions of the equations the attractors relate presumably to the partially hyperbolic class.
منابع مشابه
Controlling Multistability by Small Periodic Perturbation
A small perturbation of any system parameters may not in general create any significant qualitative change in dynamics of a multistable system. However, a slow-periodic modulation with properly adjusted amplitude and frequency can do so. In particular, it can control the number of coexisting attractors. The basic idea in this controlling mechanism is to introduce a collision between an attracto...
متن کاملHyperbolic attractor of Smale-Williams type in a system of two coupled non-autonomous amplitude equations
Recently, a system with uniformly hyperbolic attractor of Smale-Williams type has been suggested [Kuznetsov, Phys. Rev. Lett., 95, 144101, 2005]. This system consists of two coupled non-autonomous van der Pol oscillators and admits simple physical realization. In present paper we introduce amplitude equations for this system and prove that the attractor of the system of amplitude equations is a...
متن کاملExample of a physical system with a hyperbolic attractor of the Smale-Williams type.
A simple and transparent example of a nonautonomous flow system with a hyperbolic strange attractor is suggested. The system is constructed on the basis of two coupled van der Pol oscillators, the characteristic frequencies differ twice, and the parameters controlling generation in both oscillators undergo a slow periodic counterphase variation in time. In terms of stroboscopic Poincaré section...
متن کاملAn example of physical system with hyperbolic attractor of Smale – Williams type S . P . Kuznetsov
A simple and transparent example of a non-autonomous flow system, with hyper-bolic strange attractor is suggested. The system is constructed on a basis of two coupled van der Pol oscillators, the characteristic frequencies differ twice, and the parameters controlling generation in both oscillators undergo a slow periodic counter-phase variation in time. In terms of stroboscopic Poincaré section...
متن کاملHyperbolic attractor in a system of coupled non-autonomous van der Pol oscillators: Numerical test for expanding and contracting cones
We present numerical verification of hyperbolic nature for chaotic attractor in a system of two coupled non-autonomous van der Pol oscillators (Kuznetsov, Phys. Rev. Lett., 95, 144101, 2005). At certain parameter values, in the four-dimensional phase space of the Poincaré map a toroidal domain (a direct product of a circle and a three-dimensional ball) is determined, which is mapped into itself...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 84 1 Pt 2 شماره
صفحات -
تاریخ انتشار 2011